A Relative Cost Model for XQuery

Soichiro Hidaka
National Institute of
Informatics
Tokyo Japan

hidaka@nii.ac.jp

ABSTRACT

XQuery is a functional query language for XML. We pro-
pose a relative XQuery cost model that is able to estimate
the performance gain during source level transformation.
This research facilitates the evaluation of various rewrit-
ing techniques without introducing real engines. The cost
model consists of simple recursive functions based on func-
tional language constructs. They are determined using for-
mal semantics and other known efficient algorithms. An-
alytic comparison of costs between expressions before and
after transformation is possible in an engine-independent
manner. The relativity of the model allows uninterpreted
components within, which do not affect the mathematical
proof of the comparison. Moreover, it can be tailored to
reflect engine specific evaluation strategies such as the order
of evaluation of operands.

1. PROBLEM STATEMENT AND CONTRI-
BUTION

In the database optimization research field, performance
evaluation is often conducted by experiments using real en-
gines. However, as they are conducted on their own engines
([3] for example), applicability to other engines is not guar-
anteed for the results. Since our target language XQuery([4]
is relatively new, many of the engines are still in the research
stage. Therefore, stable reference engines available to every-
one do not yet exist. In addition, these engines make con-
stant progress, which makes these results quickly obsolete.
Installations are also hard tasks. Our goal is to make a cost
model that can play a role of a sort of “virtual engine” as
an evaluation infrastructure for rewriting optimization re-
search. Our contributions of XQuery cost model include (i)
simple, static, provable estimation of relative cost gain/loss
in an engine-independent manner, (ii) ability to incorpo-
rate diversity in evaluation strategy so that the cost model
can tell us which rewriting to choose. Please refer to [6]
for more complete list of (semantically-validated) transfor-
mation rules, cost definition derivations, proved cost change

Permission to make digital or hard copies of all or part of this work for

Hiroyuki Kato
National Institute of
Informatics
Tokyo Japan

kato@nii.ac.jp

Masatoshi Yoshikawa
Kyoto University
Kyoto Japan

yoshikawa@i.kyoto-
u.ac.jp

calculationsas well as evaluation of the cost model using real
engines.

2. COST MODEL

Since the model should represent entities that produce
correct results, (1) it is basically derived from formal se-
mantics [4]. However, (2) for expressions whose efficient
evaluation strategies are known, that strategy is used in-
stead. In case of element construction expressions whose
cost description can be found in neither of (1) or (2), our
original assumptions apply (3).

The cost model consists of the following three basic con-
stituents. Cost function c(e) is recursively defined by
the cost, size, and probability functions of the subexpres-
sions. (Auxiliary) size function s(e) is defined in terms
of size and probability functions of the subexpressions. It
doesn’t depend on the cost of the subexpressions. (Auxil-
iary) probability function p(e) is defined in terms of the
probability and size functions of the subexpressions. It is
also independent of the costs of the subexpressions.

Summary of cost functions can be found in Table 1.
Estimation for case (1): The cost of for expression (CFOR)
is determined using formal semantics. In its Dynamic Eval-
uation section, the number of judgments in the premise part
are equal to the number of items in the input sequence s. We
obtain (CFOR) assuming uniform cost for each evaluation of
return clause (f($z)).

Although the evaluation strategies for each operator (we
refer to those in Table 1 rather than physical operators) may
depend on each real engine, this diversity can be incorpo-
rated to obtain an engine-specific cost model. For example,
(CsOME) models engines that stops evaluation of some ex-
pression as soon as it finds a binding which makes its body
yield true.

Estimation for case (2): Path expression is one of the lan-
guage constructs that can characterize the behavior of imple-
mentations because there is a lot of optimization opportuni-
ties. Based on the notion of data and query complexity [5]
and our simple benchmarking, we have chosen (CGSTEP)
for engines that evaluate polinomially with respect to both
query and data size such as eXist', and (CcsTEP) for those
evaluate exponentially for query size and polinomially for

personal or classroom use is granted without fee provided that copies aredata size such as Galax 0.4.02.
not made or distributed for profit or commercial advantage and that copies Estimation for case (3): Specification requires that an

bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
SAC’07March 11-15, 2007, Seoul, Korea
Copyright 2007 ACM 1-59593-480-4 /07/000%5.00.

element constructor make a whole copy of its content. By

http://exist.sourceforge.net/
*http://www.galaxquery.org/

expression description || cost label size/probability label
for $z in s return f($z) for expr. || c(s) +s(s) - c(f) CFOR s(s) - s(f) SFOR
literal literal | constant (uninterpreted)
(z){e}{/z) elem. constructor || c(e) + (s(e) +s(e//*)) - C. | CDEC 1 SDEC
e/x relative path expr. || c(e) +s(e)® -k CcsTEP || k- p(nodename == z) - s(e) | SCSTEP
e/a/q/ ... Jan trailing path expr. || c(e) + s(e)® x N7 CGSTEP
e/ descendant path expr. || c(e) +k-s(e//x) CDSTEP || s(e//x) - p(nodename == z) | SDSTEP
e, e sequence || c(e1) + c(e2) CSEQ s(e1) + s(e2) SSEQ
Sa variable reference || C\r Cvr s(dereference($z)) SVR
e1 and ez logical expr c(e1) + c(ea) ONAND 1 SAND

) " | cler) +pler) - cle2) CAND pler) - ple2) PAND

c(s) +s(s) - c(p) CNSOME || 1 SSOME

some $z in s satisfies p($z) quantified expr. o(s)+ 1,(17?(5))*) <) CsoME —(- P(P))s(") Psove

Meanings of symbols in the table: e, f: expressions, s: expression as a sequence, p: expression as a predicate, C¢,Cy,c, d, k: some constants,

z: symbols for elements and variables, dereference($z): an expression bound to $z, nodename: name of the context node, f($z): expressions

that depend on variable $z. Labels start with C, S and P for (resp.) cost, size and probability functions.

Table 1: Summary of cost functions for langage constructs

intuition, the cost will be proportional to the size of the
contents of the element constructor. Consequently, we de-
rived (CDEC) and (SDEC) for the element construction costs,

where s(e//*) is recursively defied by s(e/*)+>_, ./, s(z//*).

Our benchmark on Galax also confirmed this model.

3. COST CHANGE ESTIMATION AND IM-
PLICATION

Let us consider the following associative law for quantified
expression that has where clauses:

some $y in (for $z in ¢
where h($2)
return g($2))
satisfies f(3y)

some $z in ¢

Cost change estimation using Table 1 concludes cost re-
duction under (CsoME) and (CAND), while increase under
(CsoME) and (CNAND). The intuitive explanation of the
cost reduction is that in the left hand side, although some
may determine the result without scanning every element
of its in clause, evaluation of the for expression for ev-
ery element in the input sequence ¢ is necessary. This is
because the model is based on strict evaluation strategy.
Lazy evaluation strategy would lead to the same cost for
both sides. In other words the right hand side (partially)
simulates lazy evaluation. Consequently, the cost model
can simulate the lazy evaluation strategy by the applica-
tion of this kind of transformation. As for cost increase, we
were able to observe it for Galax 0.3.5 and eXist snapshot-
200411192, since both operands of and expressions are al-
ways evaluated in both these implementations. This is an
example that the cost model told us some specific pitfalls
in existing engines with very sophisticated features. For
these implementations, the law can be expressed in terms
of if expressions by applying an additional transformation
e1 and ex = if (e1) then e; else fn:false() to avoid this
cost increase.

4. RELATED WORKS

For implementations in which XML data is stored in RDB
and XQuery is transformed to SQL [2], the cost models are
discussed based on those of SQL engines [8]. Cost model
in IBM DB2 XML [1] is also highly integrated with cost

*http://prdownloads.sourceforge.net/exist/
eXist-snapshot-20041119. jar

= satisfies (h($z) and (some $y in g($z)
satisfies f(8y)))

model for RDB. XQuery is translated into a set of alterna-
tive physical plans including index access, for which costs
are estimated based on statistic information such as num-
bers of documents as well as average numbers of nodes with
same name under specific elements. TIMBER [7] translates
queries including XQuery into their tree algebra, in which
cost estimator using selectivity in a path expression and
the size function plays an important role. Our cost model
works at logical level rather than physical plan-selection
level, where concrete value estimated are compared and the
plan with the least cost is chosen for execution. Full-fledged
DB like [1] have rewriting phase, although the rules are
based on heuristics. Our model is expected to provide a
basis to the heuristics with respect to relative cost gain.

5. REFERENCES

[1] A. Balmin, T. Eliaz, J. Hornibrook, L. Lim, G. M.
Lohman, D. Simmen, M. Wang, and C. Zhang.
Cost-based optimization in DB2 XML. IBM Syst. J.,
45(2):299-319, 2006.

[2] P. Bohannon, J. Freire, P. Roy, and J. Siméon. From
XML Schema to Relations: A Cost-Based Approach to
XML Storage. In ICDE, pages 64—75, 2002.

[3] A. Deutsch, Y. Papakonstantinou, and Y. Xu. The
NEXT Logical Framework for XQuery. In VLDB, pages
168-179, 2004.

[4] D. Draper, P. Fankhauser, M. Ferndndez, A. Malhotra,
K. Rose, M. Rys, J. Siméon, and P. Wadler. XQuery
1.0 and XPath 2.0 Formal Semantics. W3C Candidate
Recommendation, June 2006.

[5] G. Gottlob, C. Koch, and R. Pichler. Efficient
Algorithms for Processing XPath Queries. In VLDB,
pages 95-106, 2002.

[6] S. Hidaka, H. Kato, and M. Yoshikawa. An XQuery
Cost Model in Relative Form. Technical Report
NII-2005-016E, National Institute of Informatics, Nov.
2005.

[7] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S.
Lakshmanan, A. Nierman, S. Paparizos, J. M. Patel,
D. Srivastava, N. Wiwatwattana, Y. Wu, and C. Yu.
TIMBER: A native XML database. VLDB Journal,
11(4):274-291, 2002.

[8] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe.
Efficient and extensible algorithms for multi query
optimization. In SIGMOD, pages 249-260, 2000.

